

Analysis and Modeling of Mobile Data Traffic in Mexico City

Eduardo Mucelli Rezende Oliveira^{♦,×}, Aline Carneiro Viana[×], K. P. Naveen[×], and Carlos Sarraute^{*}

^{\$\delta\}

Introduction

- Worldwide smartphone sales are increasing mobile data traffic.
- ▶ This creates a heavy load on cellular operator networks.
- ► Understanding mobile data traffic demands is crucial to design data offloading solutions.
- Smartphones provide a powerful and cost effective way to study mobile traffic behaviour on a large scale.

Objectives

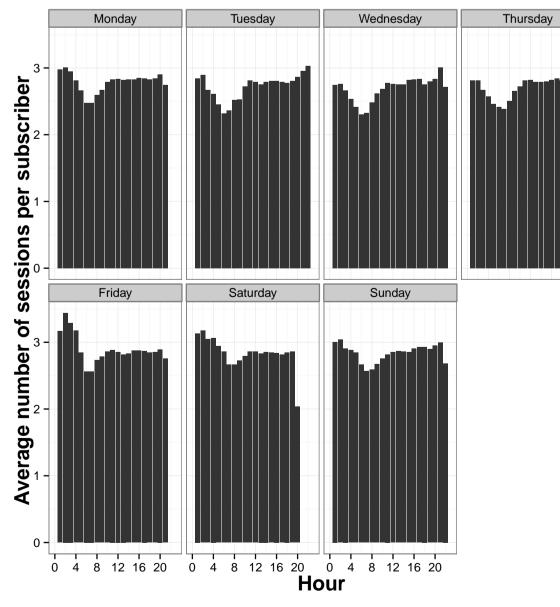
- Analyse urban mobile data traffic usage patterns.
- Create a mobile data traffic simulator capable of imitating activity patterns for different periods of the day.

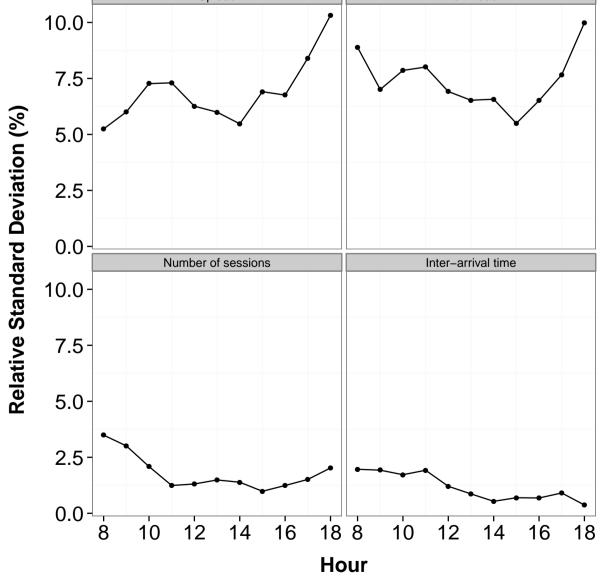
Outline of our Contribution

- ► Characterize **traffic dynamics** and its **temporal** variability.
- Find a set of **profiles** that best describe users' traffic demands.
- ► Model usage patterns for different profiles and periods of the day.
- Design and validate a synthetic trace generator.

Dataset Analysis

- Anonymized dataset collected by a major operator in Mexico City.
- ▶ Data traffic of 6.8 million subscribers.
- ▶ 1.05 billion sessions from July 1st to October 31st, 2013.
- ▶ Session information: (1) upload and download volume, (2) session duration, (3) session timestamp.





- ► Hourly dynamics (left) and Relative Standard Deviation (RSD) within the week (right) illustrate the temporal dynamics.
- ► Parameters from same hours on different days present less variability than parameters on different hours within the same day.

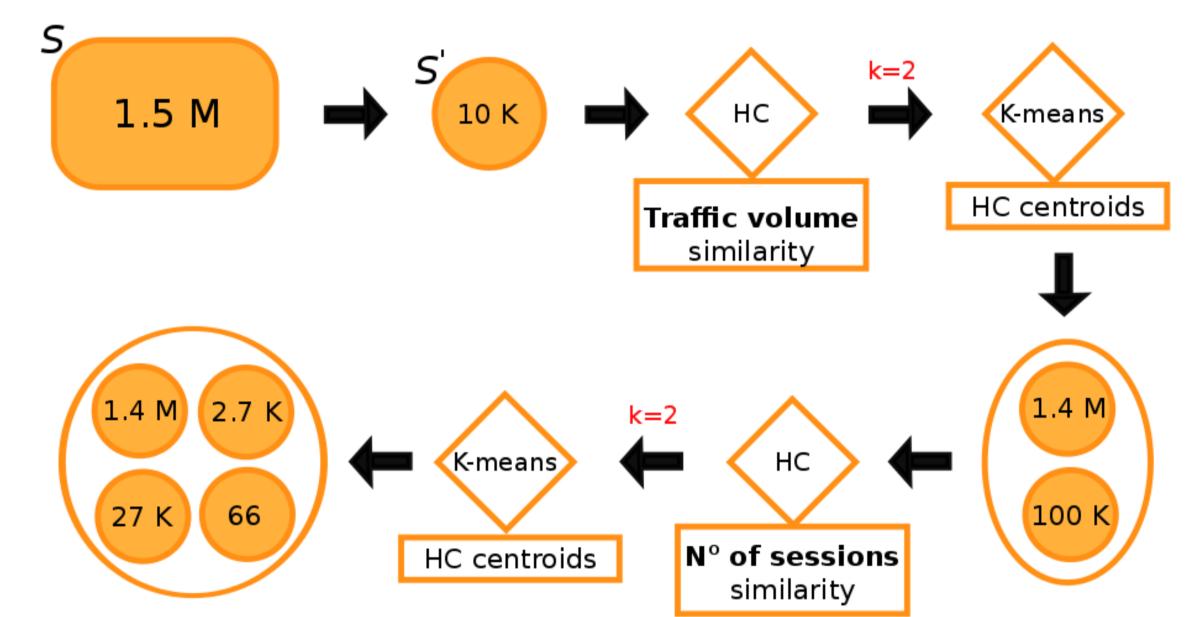
Subscriber Profiling Methodology

- ▶ Due to the routinary behavior, we use one day to model traffic behavior.
- ▶ Take random sample of subscribers $S' \subset S$.

Profiling occurs in 4 stages:

► Stages performed in 2 rounds:

- 1. Build similarity graph.
- 2. Perform Hierarchical Clustering (HC).
- 3. Determine best number of cluster (k=2).
- 4. Classify users in $S-S^\prime$ using k-means.
- 1. First on **traffic volume** similarity graph.
- 2. Then on N° of sessions similarity subgraphs.

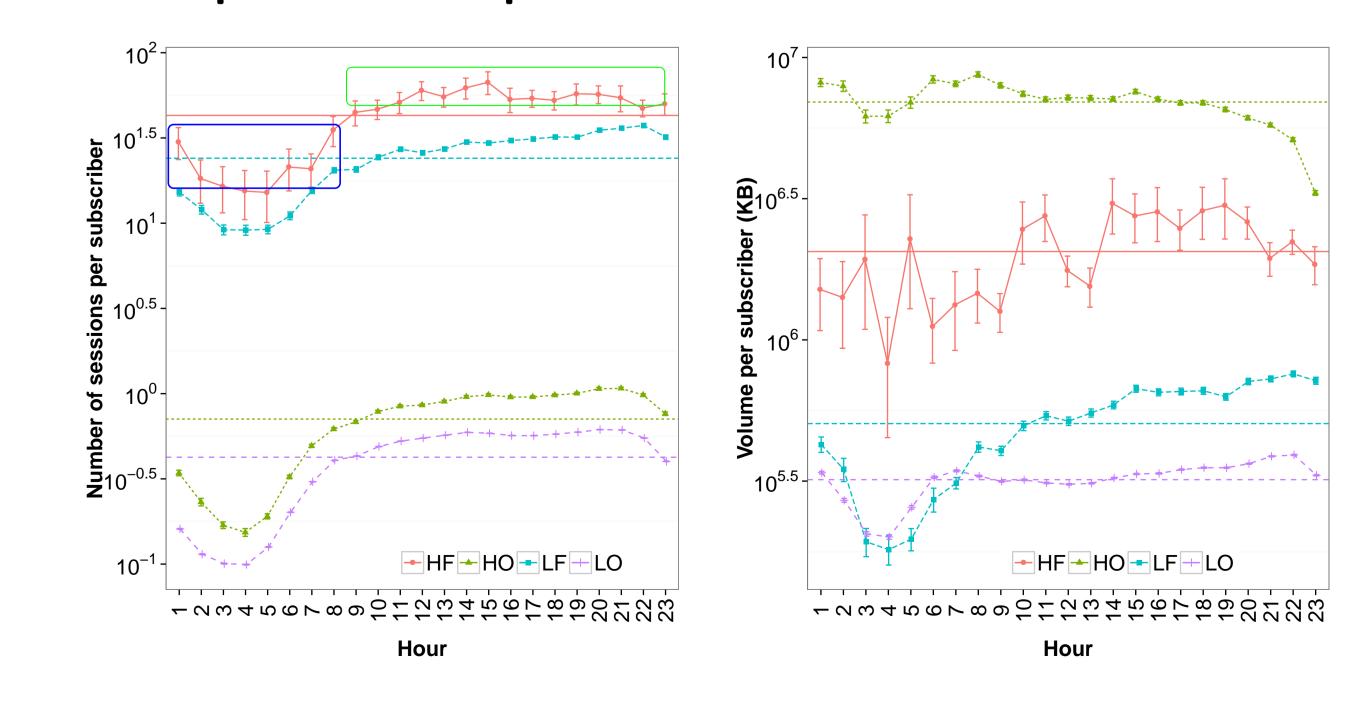


Resulting Subscriber Profiles

► Four profiles are obtained, which describe the typical data traffic of subscribers.

	Li	ght	H eavy	
Volume	29 KB to 20 GB		21 GB to 625 GB	
N° of users	1489242		27659	
	$\mathbf{O}_{\text{ccasional}}$	F requent	O ccasional	F requent
N° of sessions	1 to 278	279 to 8737	1 to 495	538 to 1670
N° of users	1486496	2746	27593	66

► There are **peak** and **non-peak** hours in the traffic demands.



Measurement-driven Traffic Modeling

- Characterize 4 user profiles for peak and non-peak hours.
- Estimate the distributions that best fit each parameter on each profile in peak and non-peak hours.

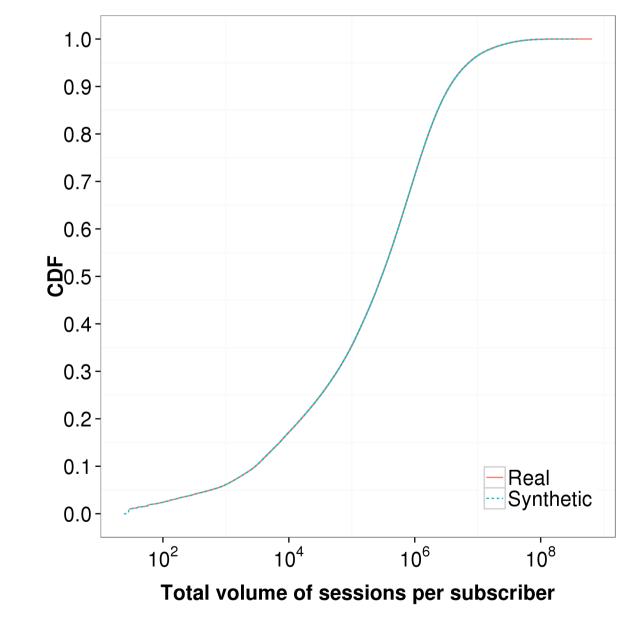
Hour	Profile	Distribution	Parameters
Peak	НО	Gamma	$lpha=1.3060$, $eta=0.001$, $x_0=1$
	HF	Log-normal	$\sigma=4.0106$, $\mu=1.2114$, $x_0=10$
	LO	Gamma	$lpha=1.2799$, $eta=0.001$, $x_0=0.5$
	LF	Weibull	$k=0.9173$, $\lambda=135$, $x_0=3.9$
Non-Peak	НО	Gamma	$lpha=1.2679$, $eta=0.001$, $x_0=1$
	HF	Log-normal	$\sigma = 3.8552$, $\mu = 0.9196$, $x_0 = 4.3$
	LO	Gamma	$lpha=1.2799$, $eta=0.001$, $x_0=0.5$
	LF	Log-normal	$\sigma=4.1174$, $\mu=1.0291$, $x_0=3$

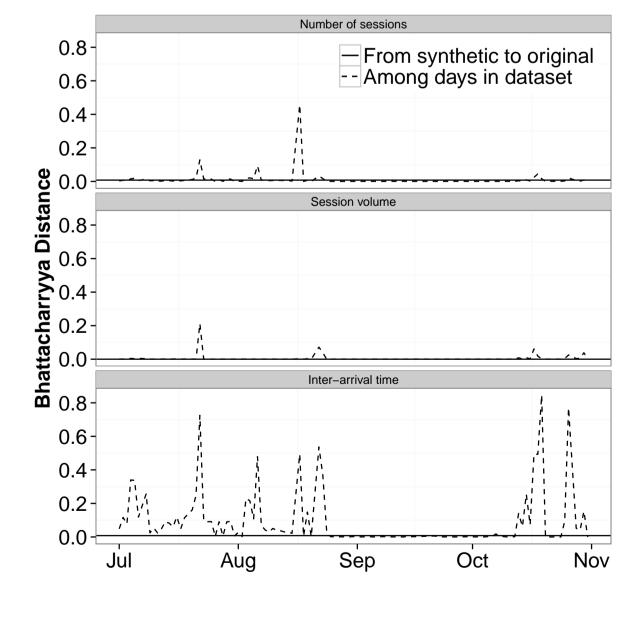
Generation of Synthetic Trace

- Assign users to profiles according to the profiles population.
- ▶ e.g. LO users have 0.97 probability.
- For each user profile and hour:
- ► Sample n° of sessions according to the distribution.
- ► Sample IAT according to the distribution.
- ► Sample volume according to the distribution.

Synthetic Traffic Model Evaluation

We show the CDFs of total volume per subscriber, for the real trace and the synthetic trace (left).





- We used **Bhattacharyya distance** d to measure similarity between distributions (right).
 - ightharpoonup Distances between original day D and the remaining days in dataset (dashed lines).
 - lacktriangle Distance between original day D and synthetic day D' (solid line).
- We verified that d(D,D') is within the 95% confidence interval of the distances d(D,E) for $E\in\mathbb{D}$ (where \mathbb{D} is the set of days in the dataset).
- ► The synthetic traffic is **consistent** with the real trace.